lerobot/tests/test_datasets.py

70 lines
2.7 KiB
Python

import einops
import pytest
import torch
from torchrl.data.replay_buffers.replay_buffers import TensorDictReplayBuffer
from torchrl.data.replay_buffers.samplers import SamplerWithoutReplacement
from lerobot.common.datasets.factory import make_offline_buffer
from lerobot.common.utils import init_hydra_config
from .utils import DEVICE, DEFAULT_CONFIG_PATH
@pytest.mark.parametrize(
"env_name,dataset_id",
[
("simxarm", "lift"),
("pusht", "pusht"),
("aloha", "sim_insertion_human"),
("aloha", "sim_insertion_scripted"),
("aloha", "sim_transfer_cube_human"),
("aloha", "sim_transfer_cube_scripted"),
],
)
def test_factory(env_name, dataset_id):
cfg = init_hydra_config(
DEFAULT_CONFIG_PATH,
overrides=[f"env={env_name}", f"env.task={dataset_id}", f"device={DEVICE}"]
)
offline_buffer = make_offline_buffer(cfg)
for key in offline_buffer.image_keys:
img = offline_buffer[0].get(key)
assert img.dtype == torch.float32
# TODO(rcadene): we assume for now that image normalization takes place in the model
assert img.max() <= 1.0
assert img.min() >= 0.0
def test_compute_stats():
"""Check that the statistics are computed correctly according to the stats_patterns property.
We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do
because we are working with a small dataset).
"""
cfg = init_hydra_config(
DEFAULT_CONFIG_PATH, overrides=["env=aloha", "env.task=sim_transfer_cube_human"]
)
buffer = make_offline_buffer(cfg)
# Get all of the data.
all_data = TensorDictReplayBuffer(
storage=buffer._storage,
batch_size=len(buffer),
sampler=SamplerWithoutReplacement(),
).sample().float()
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
# computation of the statistics. While doing this, we also make sure it works when we don't divide the
# dataset into even batches.
computed_stats = buffer._compute_stats(batch_size=int(len(all_data) * 0.75))
for k, pattern in buffer.stats_patterns.items():
expected_mean = einops.reduce(all_data[k], pattern, "mean")
assert torch.allclose(computed_stats[k]["mean"], expected_mean)
try:
assert torch.allclose(
computed_stats[k]["std"],
torch.sqrt(einops.reduce((all_data[k] - expected_mean) ** 2, pattern, "mean"))
)
except:
breakpoint()
assert torch.allclose(computed_stats[k]["min"], einops.reduce(all_data[k], pattern, "min"))
assert torch.allclose(computed_stats[k]["max"], einops.reduce(all_data[k], pattern, "max"))