300 lines
10 KiB
Python
300 lines
10 KiB
Python
import importlib
|
|
import logging
|
|
from collections import deque
|
|
from typing import Optional
|
|
|
|
import einops
|
|
import numpy as np
|
|
import torch
|
|
from dm_control import mujoco
|
|
from dm_control.rl import control
|
|
from tensordict import TensorDict
|
|
from torchrl.data.tensor_specs import (
|
|
BoundedTensorSpec,
|
|
CompositeSpec,
|
|
DiscreteTensorSpec,
|
|
UnboundedContinuousTensorSpec,
|
|
)
|
|
|
|
from lerobot.common.envs.abstract import AbstractEnv
|
|
from lerobot.common.envs.aloha.constants import (
|
|
ACTIONS,
|
|
ASSETS_DIR,
|
|
DT,
|
|
JOINTS,
|
|
)
|
|
from lerobot.common.envs.aloha.tasks.sim import BOX_POSE, InsertionTask, TransferCubeTask
|
|
from lerobot.common.envs.aloha.tasks.sim_end_effector import (
|
|
InsertionEndEffectorTask,
|
|
TransferCubeEndEffectorTask,
|
|
)
|
|
from lerobot.common.envs.aloha.utils import sample_box_pose, sample_insertion_pose
|
|
from lerobot.common.utils import set_seed
|
|
|
|
_has_gym = importlib.util.find_spec("gym") is not None
|
|
|
|
|
|
class AlohaEnv(AbstractEnv):
|
|
_reset_warning_issued = False
|
|
|
|
def __init__(
|
|
self,
|
|
task,
|
|
frame_skip: int = 1,
|
|
from_pixels: bool = False,
|
|
pixels_only: bool = False,
|
|
image_size=None,
|
|
seed=1337,
|
|
device="cpu",
|
|
num_prev_obs=1,
|
|
num_prev_action=0,
|
|
):
|
|
super().__init__(
|
|
task=task,
|
|
frame_skip=frame_skip,
|
|
from_pixels=from_pixels,
|
|
pixels_only=pixels_only,
|
|
image_size=image_size,
|
|
seed=seed,
|
|
device=device,
|
|
num_prev_obs=num_prev_obs,
|
|
num_prev_action=num_prev_action,
|
|
)
|
|
|
|
def _make_env(self):
|
|
if not _has_gym:
|
|
raise ImportError("Cannot import gym.")
|
|
|
|
if not self.from_pixels:
|
|
raise NotImplementedError()
|
|
|
|
self._env = self._make_env_task(self.task)
|
|
|
|
def render(self, mode="rgb_array", width=640, height=480):
|
|
# TODO(rcadene): render and visualizer several cameras (e.g. angle, front_close)
|
|
image = self._env.physics.render(height=height, width=width, camera_id="top")
|
|
return image
|
|
|
|
def _make_env_task(self, task_name):
|
|
# time limit is controlled by StepCounter in env factory
|
|
time_limit = float("inf")
|
|
|
|
if "sim_transfer_cube" in task_name:
|
|
xml_path = ASSETS_DIR / "bimanual_viperx_transfer_cube.xml"
|
|
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
|
task = TransferCubeTask(random=False)
|
|
elif "sim_insertion" in task_name:
|
|
xml_path = ASSETS_DIR / "bimanual_viperx_insertion.xml"
|
|
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
|
task = InsertionTask(random=False)
|
|
elif "sim_end_effector_transfer_cube" in task_name:
|
|
raise NotImplementedError()
|
|
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_transfer_cube.xml"
|
|
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
|
task = TransferCubeEndEffectorTask(random=False)
|
|
elif "sim_end_effector_insertion" in task_name:
|
|
raise NotImplementedError()
|
|
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_insertion.xml"
|
|
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
|
task = InsertionEndEffectorTask(random=False)
|
|
else:
|
|
raise NotImplementedError(task_name)
|
|
|
|
env = control.Environment(
|
|
physics, task, time_limit, control_timestep=DT, n_sub_steps=None, flat_observation=False
|
|
)
|
|
return env
|
|
|
|
def _format_raw_obs(self, raw_obs):
|
|
if self.from_pixels:
|
|
image = torch.from_numpy(raw_obs["images"]["top"].copy())
|
|
image = einops.rearrange(image, "h w c -> c h w")
|
|
assert image.dtype == torch.uint8
|
|
obs = {"image": {"top": image}}
|
|
|
|
if not self.pixels_only:
|
|
obs["state"] = torch.from_numpy(raw_obs["qpos"]).type(torch.float32)
|
|
else:
|
|
# TODO(rcadene):
|
|
raise NotImplementedError()
|
|
# obs = {"state": torch.from_numpy(raw_obs["observation"]).type(torch.float32)}
|
|
|
|
return obs
|
|
|
|
def _reset(self, tensordict: Optional[TensorDict] = None):
|
|
if tensordict is not None and not AlohaEnv._reset_warning_issued:
|
|
logging.warning(f"{self.__class__.__name__}._reset ignores the provided tensordict.")
|
|
AlohaEnv._reset_warning_issued = True
|
|
|
|
# we need to handle seed iteration, since self._env.reset() rely an internal _seed.
|
|
self._current_seed += 1
|
|
self.set_seed(self._current_seed)
|
|
|
|
# TODO(rcadene): do not use global variable for this
|
|
if "sim_transfer_cube" in self.task:
|
|
BOX_POSE[0] = sample_box_pose() # used in sim reset
|
|
elif "sim_insertion" in self.task:
|
|
BOX_POSE[0] = np.concatenate(sample_insertion_pose()) # used in sim reset
|
|
|
|
raw_obs = self._env.reset()
|
|
# TODO(rcadene): add assert
|
|
# assert self._current_seed == self._env._seed
|
|
|
|
obs = self._format_raw_obs(raw_obs.observation)
|
|
|
|
if self.num_prev_obs > 0:
|
|
stacked_obs = {}
|
|
if "image" in obs:
|
|
self._prev_obs_image_queue = deque(
|
|
[obs["image"]["top"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
|
)
|
|
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
|
|
if "state" in obs:
|
|
self._prev_obs_state_queue = deque(
|
|
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
|
)
|
|
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
|
obs = stacked_obs
|
|
|
|
td = TensorDict(
|
|
{
|
|
"observation": TensorDict(obs, batch_size=[]),
|
|
"done": torch.tensor([False], dtype=torch.bool),
|
|
},
|
|
batch_size=[],
|
|
)
|
|
|
|
return td
|
|
|
|
def _step(self, tensordict: TensorDict):
|
|
td = tensordict
|
|
action = td["action"].numpy()
|
|
assert action.ndim == 1
|
|
# TODO(rcadene): add info["is_success"] and info["success"] ?
|
|
|
|
_, reward, _, raw_obs = self._env.step(action)
|
|
|
|
# TODO(rcadene): add an enum
|
|
success = done = reward == 4
|
|
obs = self._format_raw_obs(raw_obs)
|
|
|
|
if self.num_prev_obs > 0:
|
|
stacked_obs = {}
|
|
if "image" in obs:
|
|
self._prev_obs_image_queue.append(obs["image"]["top"])
|
|
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
|
|
if "state" in obs:
|
|
self._prev_obs_state_queue.append(obs["state"])
|
|
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
|
obs = stacked_obs
|
|
|
|
td = TensorDict(
|
|
{
|
|
"observation": TensorDict(obs, batch_size=[]),
|
|
"reward": torch.tensor([reward], dtype=torch.float32),
|
|
# succes and done are true when coverage > self.success_threshold in env
|
|
"done": torch.tensor([done], dtype=torch.bool),
|
|
"success": torch.tensor([success], dtype=torch.bool),
|
|
},
|
|
batch_size=[],
|
|
)
|
|
return td
|
|
|
|
def _make_spec(self):
|
|
obs = {}
|
|
from omegaconf import OmegaConf
|
|
|
|
if self.from_pixels:
|
|
if isinstance(self.image_size, int):
|
|
image_shape = (3, self.image_size, self.image_size)
|
|
elif OmegaConf.is_list(self.image_size):
|
|
assert len(self.image_size) == 3 # c h w
|
|
assert self.image_size[0] == 3 # c is RGB
|
|
image_shape = tuple(self.image_size)
|
|
else:
|
|
raise ValueError(self.image_size)
|
|
if self.num_prev_obs > 0:
|
|
image_shape = (self.num_prev_obs + 1, *image_shape)
|
|
|
|
obs["image"] = {
|
|
"top": BoundedTensorSpec(
|
|
low=0,
|
|
high=255,
|
|
shape=image_shape,
|
|
dtype=torch.uint8,
|
|
device=self.device,
|
|
)
|
|
}
|
|
if not self.pixels_only:
|
|
state_shape = (len(JOINTS),)
|
|
if self.num_prev_obs > 0:
|
|
state_shape = (self.num_prev_obs + 1, *state_shape)
|
|
|
|
obs["state"] = UnboundedContinuousTensorSpec(
|
|
# TODO: add low and high bounds
|
|
shape=state_shape,
|
|
dtype=torch.float32,
|
|
device=self.device,
|
|
)
|
|
else:
|
|
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
|
|
state_shape = (len(JOINTS),)
|
|
if self.num_prev_obs > 0:
|
|
state_shape = (self.num_prev_obs + 1, *state_shape)
|
|
|
|
obs["state"] = UnboundedContinuousTensorSpec(
|
|
# TODO: add low and high bounds
|
|
shape=state_shape,
|
|
dtype=torch.float32,
|
|
device=self.device,
|
|
)
|
|
self.observation_spec = CompositeSpec({"observation": obs})
|
|
|
|
# TODO(rcadene): valid when controling end effector?
|
|
# action_space = self._env.action_spec()
|
|
# self.action_spec = BoundedTensorSpec(
|
|
# low=action_space.minimum,
|
|
# high=action_space.maximum,
|
|
# shape=action_space.shape,
|
|
# dtype=torch.float32,
|
|
# device=self.device,
|
|
# )
|
|
|
|
# TODO(rcaene): add bounds (where are they????)
|
|
self.action_spec = BoundedTensorSpec(
|
|
shape=(len(ACTIONS)),
|
|
low=-1,
|
|
high=1,
|
|
dtype=torch.float32,
|
|
device=self.device,
|
|
)
|
|
|
|
self.reward_spec = UnboundedContinuousTensorSpec(
|
|
shape=(1,),
|
|
dtype=torch.float32,
|
|
device=self.device,
|
|
)
|
|
|
|
self.done_spec = CompositeSpec(
|
|
{
|
|
"done": DiscreteTensorSpec(
|
|
2,
|
|
shape=(1,),
|
|
dtype=torch.bool,
|
|
device=self.device,
|
|
),
|
|
"success": DiscreteTensorSpec(
|
|
2,
|
|
shape=(1,),
|
|
dtype=torch.bool,
|
|
device=self.device,
|
|
),
|
|
}
|
|
)
|
|
|
|
def _set_seed(self, seed: Optional[int]):
|
|
set_seed(seed)
|
|
# TODO(rcadene): seed the env
|
|
# self._env.seed(seed)
|
|
logging.warning("Aloha env is not seeded")
|