lerobot/lerobot/common/robots/koch/robot_koch.py

234 lines
9.2 KiB
Python

#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from typing import Any
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
from lerobot.common.motors.dynamixel import (
DynamixelMotorsBus,
OperatingMode,
)
from ..robot import Robot
from ..utils import ensure_safe_goal_position
from .configuration_koch import KochRobotConfig
logger = logging.getLogger(__name__)
class KochRobot(Robot):
"""
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow
expansion, developed by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
"""
config_class = KochRobotConfig
name = "koch"
def __init__(self, config: KochRobotConfig):
super().__init__(config)
self.config = config
self.arm = DynamixelMotorsBus(
port=self.config.port,
motors={
"shoulder_pan": Motor(1, "xl430-w250", MotorNormMode.RANGE_M100_100),
"shoulder_lift": Motor(2, "xl430-w250", MotorNormMode.RANGE_M100_100),
"elbow_flex": Motor(3, "xl330-m288", MotorNormMode.RANGE_M100_100),
"wrist_flex": Motor(4, "xl330-m288", MotorNormMode.RANGE_M100_100),
"wrist_roll": Motor(5, "xl330-m288", MotorNormMode.RANGE_M100_100),
"gripper": Motor(6, "xl330-m288", MotorNormMode.RANGE_0_100),
},
calibration=self.calibration,
)
self.cameras = make_cameras_from_configs(config.cameras)
@property
def state_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def action_feature(self) -> dict:
return self.state_feature
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {}
for cam_key, cam in self.cameras.items():
cam_ft[cam_key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def is_connected(self) -> bool:
# TODO(aliberts): add cam.is_connected for cam in self.cameras
return self.arm.is_connected
def connect(self) -> None:
"""
We assume that at connection time, arm is in a rest position,
and torque can be safely disabled to run calibration.
"""
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
self.arm.connect()
if not self.is_calibrated:
self.calibrate()
for cam in self.cameras.values():
cam.connect()
self.configure()
logger.info(f"{self} connected.")
@property
def is_calibrated(self) -> bool:
return self.arm.is_calibrated
def calibrate(self) -> None:
logger.info(f"\nRunning calibration of {self}")
self.arm.disable_torque()
for name in self.arm.names:
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
input("Move robot to the middle of its range of motion and press ENTER....")
homing_offsets = self.arm.set_half_turn_homings()
full_turn_motors = ["shoulder_pan", "wrist_roll"]
unknown_range_motors = [name for name in self.arm.names if name not in full_turn_motors]
logger.info(
f"Move all joints except {full_turn_motors} sequentially through their entire "
"ranges of motion.\nRecording positions. Press ENTER to stop..."
)
range_mins, range_maxes = self.arm.record_ranges_of_motion(unknown_range_motors)
for name in full_turn_motors:
range_mins[name] = 0
range_maxes[name] = 4095
self.calibration = {}
for name, motor in self.arm.motors.items():
self.calibration[name] = MotorCalibration(
id=motor.id,
drive_mode=0,
homing_offset=homing_offsets[name],
range_min=range_mins[name],
range_max=range_maxes[name],
)
self.arm.write_calibration(self.calibration)
self._save_calibration()
logger.info(f"Calibration saved to {self.calibration_fpath}")
def configure(self) -> None:
self.arm.disable_torque()
self.arm.configure_motors()
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos
# can't rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while
# assembling the arm, you could end up with a servo with a position 0 or 4095 at a crucial
# point
for name in self.arm.names:
if name != "gripper":
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
# Use 'position control current based' for gripper to be limited by the limit of the current.
# For the follower gripper, it means it can grasp an object without forcing too much even tho,
# its goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
# For the leader gripper, it means we can use it as a physical trigger, since we can force with our finger
# to make it move, and it will move back to its original target position when we release the force.
self.arm.write("Operating_Mode", "gripper", OperatingMode.CURRENT_POSITION.value)
# Set better PID values to close the gap between recorded states and actions
# TODO(rcadene): Implement an automatic procedure to set optimal PID values for each motor
self.arm.write("Position_P_Gain", "elbow_flex", 1500)
self.arm.write("Position_I_Gain", "elbow_flex", 0)
self.arm.write("Position_D_Gain", "elbow_flex", 600)
self.arm.enable_torque()
def get_observation(self) -> dict[str, Any]:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
obs_dict = {}
# Read arm position
start = time.perf_counter()
obs_dict[OBS_STATE] = self.arm.sync_read("Present_Position")
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
# Capture images from cameras
for cam_key, cam in self.cameras.items():
start = time.perf_counter()
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
return obs_dict
def send_action(self, action: dict[str, float]) -> dict[str, float]:
"""Command arm to move to a target joint configuration.
The relative action magnitude may be clipped depending on the configuration parameter
`max_relative_target`. In this case, the action sent differs from original action.
Thus, this function always returns the action actually sent.
Args:
action (dict[str, float]): The goal positions for the motors.
Returns:
dict[str, float]: The action sent to the motors, potentially clipped.
"""
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
goal_pos = action
# Cap goal position when too far away from present position.
# /!\ Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.arm.sync_read("Present_Position")
goal_present_pos = {key: (g_pos, present_pos[key]) for key, g_pos in goal_pos.items()}
goal_pos = ensure_safe_goal_position(goal_present_pos, self.config.max_relative_target)
# Send goal position to the arm
self.arm.sync_write("Goal_Position", goal_pos)
return goal_pos
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting."
)
self.arm.disconnect(self.config.disable_torque_on_disconnect)
for cam in self.cameras.values():
cam.disconnect()
logger.info(f"{self} disconnected.")