lerobot/lerobot/common/envs/configs.py

290 lines
9.3 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Tuple
import draccus
from lerobot.common.constants import ACTION, OBS_ENV, OBS_IMAGE, OBS_IMAGES, OBS_ROBOT
from lerobot.common.robot_devices.robots.configs import RobotConfig
from lerobot.configs.types import FeatureType, PolicyFeature
@dataclass
class EnvConfig(draccus.ChoiceRegistry, abc.ABC):
task: str | None = None
fps: int = 30
features: dict[str, PolicyFeature] = field(default_factory=dict)
features_map: dict[str, str] = field(default_factory=dict)
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
@abc.abstractproperty
def gym_kwargs(self) -> dict:
raise NotImplementedError()
@EnvConfig.register_subclass("aloha")
@dataclass
class AlohaEnv(EnvConfig):
task: str = "AlohaInsertion-v0"
fps: int = 50
episode_length: int = 400
obs_type: str = "pixels_agent_pos"
render_mode: str = "rgb_array"
features: dict[str, PolicyFeature] = field(
default_factory=lambda: {
"action": PolicyFeature(type=FeatureType.ACTION, shape=(14,)),
}
)
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_ROBOT,
"top": f"{OBS_IMAGE}.top",
"pixels/top": f"{OBS_IMAGES}.top",
}
)
def __post_init__(self):
if self.obs_type == "pixels":
self.features["top"] = PolicyFeature(type=FeatureType.VISUAL, shape=(480, 640, 3))
elif self.obs_type == "pixels_agent_pos":
self.features["agent_pos"] = PolicyFeature(type=FeatureType.STATE, shape=(14,))
self.features["pixels/top"] = PolicyFeature(type=FeatureType.VISUAL, shape=(480, 640, 3))
@property
def gym_kwargs(self) -> dict:
return {
"obs_type": self.obs_type,
"render_mode": self.render_mode,
"max_episode_steps": self.episode_length,
}
@EnvConfig.register_subclass("pusht")
@dataclass
class PushtEnv(EnvConfig):
task: str = "PushT-v0"
fps: int = 10
episode_length: int = 300
obs_type: str = "pixels_agent_pos"
render_mode: str = "rgb_array"
visualization_width: int = 384
visualization_height: int = 384
features: dict[str, PolicyFeature] = field(
default_factory=lambda: {
"action": PolicyFeature(type=FeatureType.ACTION, shape=(2,)),
"agent_pos": PolicyFeature(type=FeatureType.STATE, shape=(2,)),
}
)
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_ROBOT,
"environment_state": OBS_ENV,
"pixels": OBS_IMAGE,
}
)
def __post_init__(self):
if self.obs_type == "pixels_agent_pos":
self.features["pixels"] = PolicyFeature(type=FeatureType.VISUAL, shape=(384, 384, 3))
elif self.obs_type == "environment_state_agent_pos":
self.features["environment_state"] = PolicyFeature(type=FeatureType.ENV, shape=(16,))
@property
def gym_kwargs(self) -> dict:
return {
"obs_type": self.obs_type,
"render_mode": self.render_mode,
"visualization_width": self.visualization_width,
"visualization_height": self.visualization_height,
"max_episode_steps": self.episode_length,
}
@EnvConfig.register_subclass("xarm")
@dataclass
class XarmEnv(EnvConfig):
task: str = "XarmLift-v0"
fps: int = 15
episode_length: int = 200
obs_type: str = "pixels_agent_pos"
render_mode: str = "rgb_array"
visualization_width: int = 384
visualization_height: int = 384
features: dict[str, PolicyFeature] = field(
default_factory=lambda: {
"action": PolicyFeature(type=FeatureType.ACTION, shape=(4,)),
"pixels": PolicyFeature(type=FeatureType.VISUAL, shape=(84, 84, 3)),
}
)
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_ROBOT,
"pixels": OBS_IMAGE,
}
)
def __post_init__(self):
if self.obs_type == "pixels_agent_pos":
self.features["agent_pos"] = PolicyFeature(type=FeatureType.STATE, shape=(4,))
@property
def gym_kwargs(self) -> dict:
return {
"obs_type": self.obs_type,
"render_mode": self.render_mode,
"visualization_width": self.visualization_width,
"visualization_height": self.visualization_height,
"max_episode_steps": self.episode_length,
}
@dataclass
class VideoRecordConfig:
"""Configuration for video recording in ManiSkill environments."""
enabled: bool = False
record_dir: str = "videos"
trajectory_name: str = "trajectory"
@dataclass
class WrapperConfig:
"""Configuration for environment wrappers."""
joint_masking_action_space: list[bool] | None = None
@dataclass
class EEActionSpaceConfig:
"""Configuration parameters for end-effector action space."""
x_step_size: float
y_step_size: float
z_step_size: float
bounds: Dict[str, Any] # Contains 'min' and 'max' keys with position bounds
use_gamepad: bool = False
@dataclass
class EnvWrapperConfig:
"""Configuration for environment wrappers."""
display_cameras: bool = False
use_relative_joint_positions: bool = True
add_joint_velocity_to_observation: bool = False
add_ee_pose_to_observation: bool = False
crop_params_dict: Optional[Dict[str, Tuple[int, int, int, int]]] = None
resize_size: Optional[Tuple[int, int]] = None
control_time_s: float = 20.0
fixed_reset_joint_positions: Optional[Any] = None
reset_time_s: float = 5.0
joint_masking_action_space: Optional[Any] = None
ee_action_space_params: Optional[EEActionSpaceConfig] = None
use_gripper: bool = False
gripper_quantization_threshold: float | None = None
gripper_penalty: float = 0.0
open_gripper_on_reset: bool = False
@EnvConfig.register_subclass(name="gym_manipulator")
@dataclass
class HILSerlRobotEnvConfig(EnvConfig):
"""Configuration for the HILSerlRobotEnv environment."""
robot: Optional[RobotConfig] = None
wrapper: Optional[EnvWrapperConfig] = None
fps: int = 10
name: str = "real_robot"
mode: str = None # Either "record", "replay", None
repo_id: Optional[str] = None
dataset_root: Optional[str] = None
task: str = ""
num_episodes: int = 10 # only for record mode
episode: int = 0
device: str = "cuda"
push_to_hub: bool = True
pretrained_policy_name_or_path: Optional[str] = None
reward_classifier: dict[str, str | None] = field(
default_factory=lambda: {
"pretrained_path": None,
"config_path": None,
}
)
def gym_kwargs(self) -> dict:
return {}
@EnvConfig.register_subclass("maniskill_push")
@dataclass
class ManiskillEnvConfig(EnvConfig):
"""Configuration for the ManiSkill environment."""
name: str = "maniskill/pushcube"
task: str = "PushCube-v1"
image_size: int = 64
control_mode: str = "pd_ee_delta_pose"
state_dim: int = 25
action_dim: int = 7
fps: int = 200
episode_length: int = 50
obs_type: str = "rgb"
render_mode: str = "rgb_array"
render_size: int = 64
device: str = "cuda"
robot: str = "so100" # This is a hack to make the robot config work
video_record: VideoRecordConfig = field(default_factory=VideoRecordConfig)
wrapper: WrapperConfig = field(default_factory=WrapperConfig)
mock_gripper: bool = False
features: dict[str, PolicyFeature] = field(
default_factory=lambda: {
"action": PolicyFeature(type=FeatureType.ACTION, shape=(7,)),
"observation.image": PolicyFeature(type=FeatureType.VISUAL, shape=(3, 64, 64)),
"observation.state": PolicyFeature(type=FeatureType.STATE, shape=(25,)),
}
)
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"observation.image": OBS_IMAGE,
"observation.state": OBS_ROBOT,
}
)
reward_classifier: dict[str, str | None] = field(
default_factory=lambda: {
"pretrained_path": None,
"config_path": None,
}
)
@property
def gym_kwargs(self) -> dict:
return {
"obs_type": self.obs_type,
"render_mode": self.render_mode,
"max_episode_steps": self.episode_length,
"control_mode": self.control_mode,
"sensor_configs": {"width": self.image_size, "height": self.image_size},
"num_envs": 1,
}