ur5-robotic-grasping/network/train_network.py

339 lines
12 KiB
Python

import argparse
import datetime
import json
import logging
import os
import sys
import cv2
import numpy as np
import tensorboardX
import torch
import torch.optim as optim
import torch.utils.data
from torchsummary import summary
from hardware.device import get_device
from inference.models import get_network
from inference.post_process import post_process_output
from utils.data import get_dataset
from utils.dataset_processing import evaluation
from utils.visualisation.gridshow import gridshow
def parse_args():
parser = argparse.ArgumentParser(description='Train network')
# Network
parser.add_argument('--network', type=str, default='grconvnet3',
help='Network name in inference/models')
parser.add_argument('--use-depth', type=int, default=1,
help='Use Depth image for training (1/0)')
parser.add_argument('--use-rgb', type=int, default=1,
help='Use RGB image for training (1/0)')
parser.add_argument('--use-dropout', type=int, default=1,
help='Use dropout for training (1/0)')
parser.add_argument('--dropout-prob', type=float, default=0.1,
help='Dropout prob for training (0-1)')
parser.add_argument('--channel-size', type=int, default=32,
help='Internal channel size for the network')
# Datasets
parser.add_argument('--dataset', type=str,
help='Dataset Name ("cornell" or "jaquard")')
parser.add_argument('--dataset-path', type=str,
help='Path to dataset')
parser.add_argument('--split', type=float, default=0.9,
help='Fraction of data for training (remainder is validation)')
parser.add_argument('--ds-shuffle', action='store_true', default=False,
help='Shuffle the dataset')
parser.add_argument('--ds-rotate', type=float, default=0.0,
help='Shift the start point of the dataset to use a different test/train split')
parser.add_argument('--num-workers', type=int, default=8,
help='Dataset workers')
# Training
parser.add_argument('--batch-size', type=int, default=8,
help='Batch size')
parser.add_argument('--epochs', type=int, default=30,
help='Training epochs')
parser.add_argument('--batches-per-epoch', type=int, default=1000,
help='Batches per Epoch')
parser.add_argument('--optim', type=str, default='adam',
help='Optmizer for the training. (adam or SGD)')
# Logging etc.
parser.add_argument('--description', type=str, default='',
help='Training description')
parser.add_argument('--logdir', type=str, default='logs/',
help='Log directory')
parser.add_argument('--vis', action='store_true',
help='Visualise the training process')
parser.add_argument('--cpu', dest='force_cpu', action='store_true', default=False,
help='Force code to run in CPU mode')
parser.add_argument('--random-seed', type=int, default=123,
help='Random seed for numpy')
args = parser.parse_args()
return args
def validate(net, device, val_data):
"""
Run validation.
:param net: Network
:param device: Torch device
:param val_data: Validation Dataset
:return: Successes, Failures and Losses
"""
net.eval()
results = {
'correct': 0,
'failed': 0,
'loss': 0,
'losses': {
}
}
ld = len(val_data)
with torch.no_grad():
for x, y, didx, rot, zoom_factor in val_data:
xc = x.to(device)
yc = [yy.to(device) for yy in y]
lossd = net.compute_loss(xc, yc)
loss = lossd['loss']
results['loss'] += loss.item() / ld
for ln, l in lossd['losses'].items():
if ln not in results['losses']:
results['losses'][ln] = 0
results['losses'][ln] += l.item() / ld
q_out, ang_out, w_out = post_process_output(lossd['pred']['pos'], lossd['pred']['cos'],
lossd['pred']['sin'], lossd['pred']['width'])
s = evaluation.calculate_iou_match(q_out,
ang_out,
val_data.dataset.get_gtbb(didx, rot, zoom_factor),
no_grasps=1,
grasp_width=w_out,
)
if s:
results['correct'] += 1
else:
results['failed'] += 1
return results
def train(epoch, net, device, train_data, optimizer, batches_per_epoch, vis=False):
"""
Run one training epoch
:param epoch: Current epoch
:param net: Network
:param device: Torch device
:param train_data: Training Dataset
:param optimizer: Optimizer
:param batches_per_epoch: Data batches to train on
:param vis: Visualise training progress
:return: Average Losses for Epoch
"""
results = {
'loss': 0,
'losses': {
}
}
net.train()
batch_idx = 0
# Use batches per epoch to make training on different sized datasets (cornell/jacquard) more equivalent.
while batch_idx <= batches_per_epoch:
for x, y, _, _, _ in train_data:
batch_idx += 1
if batch_idx >= batches_per_epoch:
break
xc = x.to(device)
yc = [yy.to(device) for yy in y]
lossd = net.compute_loss(xc, yc)
loss = lossd['loss']
if batch_idx % 100 == 0:
logging.info('Epoch: {}, Batch: {}, Loss: {:0.4f}'.format(epoch, batch_idx, loss.item()))
results['loss'] += loss.item()
for ln, l in lossd['losses'].items():
if ln not in results['losses']:
results['losses'][ln] = 0
results['losses'][ln] += l.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Display the images
if vis:
imgs = []
n_img = min(4, x.shape[0])
for idx in range(n_img):
imgs.extend([x[idx,].numpy().squeeze()] + [yi[idx,].numpy().squeeze() for yi in y] + [
x[idx,].numpy().squeeze()] + [pc[idx,].detach().cpu().numpy().squeeze() for pc in
lossd['pred'].values()])
gridshow('Display', imgs,
[(xc.min().item(), xc.max().item()), (0.0, 1.0), (0.0, 1.0), (-1.0, 1.0),
(0.0, 1.0)] * 2 * n_img,
[cv2.COLORMAP_BONE] * 10 * n_img, 10)
cv2.waitKey(2)
results['loss'] /= batch_idx
for l in results['losses']:
results['losses'][l] /= batch_idx
return results
def run():
args = parse_args()
# Set-up output directories
dt = datetime.datetime.now().strftime('%y%m%d_%H%M')
net_desc = '{}_{}'.format(dt, '_'.join(args.description.split()))
save_folder = os.path.join(args.logdir, net_desc)
if not os.path.exists(save_folder):
os.makedirs(save_folder)
tb = tensorboardX.SummaryWriter(save_folder)
# Save commandline args
if args is not None:
params_path = os.path.join(save_folder, 'commandline_args.json')
with open(params_path, 'w') as f:
json.dump(vars(args), f)
# Initialize logging
logging.root.handlers = []
logging.basicConfig(
level=logging.INFO,
filename="{0}/{1}.log".format(save_folder, 'log'),
format='[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s',
datefmt='%H:%M:%S'
)
# set up logging to console
console = logging.StreamHandler()
console.setLevel(logging.DEBUG)
# set a format which is simpler for console use
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
console.setFormatter(formatter)
# add the handler to the root logger
logging.getLogger('').addHandler(console)
# Get the compute device
device = get_device(args.force_cpu)
# Load Dataset
logging.info('Loading {} Dataset...'.format(args.dataset.title()))
Dataset = get_dataset(args.dataset)
dataset = Dataset(args.dataset_path,
ds_rotate=args.ds_rotate,
random_rotate=True,
random_zoom=True,
include_depth=args.use_depth,
include_rgb=args.use_rgb)
logging.info('Dataset size is {}'.format(dataset.length))
# Creating data indices for training and validation splits
indices = list(range(dataset.length))
split = int(np.floor(args.split * dataset.length))
if args.ds_shuffle:
np.random.seed(args.random_seed)
np.random.shuffle(indices)
train_indices, val_indices = indices[:split], indices[split:]
logging.info('Training size: {}'.format(len(train_indices)))
logging.info('Validation size: {}'.format(len(val_indices)))
# Creating data samplers and loaders
train_sampler = torch.utils.data.sampler.SubsetRandomSampler(train_indices)
val_sampler = torch.utils.data.sampler.SubsetRandomSampler(val_indices)
train_data = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
sampler=train_sampler
)
val_data = torch.utils.data.DataLoader(
dataset,
batch_size=1,
num_workers=args.num_workers,
sampler=val_sampler
)
logging.info('Done')
# Load the network
logging.info('Loading Network...')
input_channels = 1 * args.use_depth + 3 * args.use_rgb
network = get_network(args.network)
net = network(
input_channels=input_channels,
dropout=args.use_dropout,
prob=args.dropout_prob,
channel_size=args.channel_size
)
net = net.to(device)
logging.info('Done')
if args.optim.lower() == 'adam':
optimizer = optim.Adam(net.parameters())
elif args.optim.lower() == 'sgd':
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
else:
raise NotImplementedError('Optimizer {} is not implemented'.format(args.optim))
# Print model architecture.
summary(net, (input_channels, 224, 224))
f = open(os.path.join(save_folder, 'arch.txt'), 'w')
sys.stdout = f
summary(net, (input_channels, 224, 224))
sys.stdout = sys.__stdout__
f.close()
best_iou = 0.0
for epoch in range(args.epochs):
logging.info('Beginning Epoch {:02d}'.format(epoch))
train_results = train(epoch, net, device, train_data, optimizer, args.batches_per_epoch, vis=args.vis)
# Log training losses to tensorboard
tb.add_scalar('loss/train_loss', train_results['loss'], epoch)
for n, l in train_results['losses'].items():
tb.add_scalar('train_loss/' + n, l, epoch)
# Run Validation
logging.info('Validating...')
test_results = validate(net, device, val_data)
logging.info('%d/%d = %f' % (test_results['correct'], test_results['correct'] + test_results['failed'],
test_results['correct'] / (test_results['correct'] + test_results['failed'])))
# Log validation results to tensorbaord
tb.add_scalar('loss/IOU', test_results['correct'] / (test_results['correct'] + test_results['failed']), epoch)
tb.add_scalar('loss/val_loss', test_results['loss'], epoch)
for n, l in test_results['losses'].items():
tb.add_scalar('val_loss/' + n, l, epoch)
# Save best performing network
iou = test_results['correct'] / (test_results['correct'] + test_results['failed'])
if iou > best_iou or epoch == 0 or (epoch % 10) == 0:
torch.save(net, os.path.join(save_folder, 'epoch_%02d_iou_%0.2f' % (epoch, iou)))
best_iou = iou
if __name__ == '__main__':
run()